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Cylindrical, Spherical and Toroidal Layering of 
Smectic C Liquid Crystals 

G. MCKAY 

Department of Mathematics, ffniversity of Strathclyde, 26 Richmond Street, 
Glasgow, GI IXH.  Scotland, U.K. 

This article examines static solutions to the smectic C continuum equations of Leslie eta[ . ( ' )  
for a variety of layer geometries. In particular it is shown that valid molecular configurations 
exist for cylindrical, spherical and toroidal layers. Suitable parameterizations are introduced 
for each surface and the Euler-Lagrange balance equations are solved in a suitable coordinate 
system. Plots of the surfaces are presented, and their relationship to singularities in the solu- 
tions are discussed. 
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INTRODUCTION 
The isothermal smectic C continuum theory proposed by Leslie et 
al.(') has proved useful for mathematical analyses of both static and 
dynamic problems in a number of different The the- 
ory is based on two simple assumptions, the smectic layers, although 
deformed, remain of constant thickness, and also the angle of tilt 
of the alignment with respect to the layer normal remains fixed. A 
serious test for any such static theory of smectics is that it must 
predict layers forming complex surfaces such as Dupin or parabolic 
c y c l i d e ~ . ( ~ ~ ~ )  Static solutions for such layered structures have been 
verified using the static t h e ~ r y , ( ~ ~ ~ )  although these solutions are often 
restricted by constraints on the elastic constants of the materials. 

Although mentioned in previous articles, no solutions have been 
detailed for cylindrical, spherical or toroidal layers. The aim of this 
article is to present valid molecular configurations for each of these 
types of layering. In each case we will outline the method of so- 
lution and discuss any problems which arise due to singularities or 
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line defects. Cecil(’’) and Stewart and McKay(”) discuss the math- 
ematical relationship between the Dupin and parabolic cyclides and 
the geometries examined here. However it is worth noting that the 
parameterization of a torus may be derived from that of a Dupin 
cyclide if the eccentricity of the underlying focal domain reduces to 
zero. 

In the following Sections we introduce the smectic C continuum 
theory of Leslie et al.(l) In particular we discuss the Euler-Lagrange 
static equilibrium equations and the associated Lagrange multipli- 
ers. We examine solutions for, respectively, cylindrical, spherical 
and toroidal layered structures; in each case we introduce a suitable 
parameterization for the surfaces before examining one molecular 
configuration. Details and calculations for a second valid solution 
for each layering are given in Stewart and McKay.(l’) 

SMECTIC CONTINUUM THEORY 
Liquid crystals are elongated molecules for which the long molecular 
axes locally adopt one common direction in space, usually described 
by a unit vector n, known as the director. Smectic C liquid crystals 
are layered structures where the director makes an angle 0 with re- 
spect to the layer normal. The smectic structure can be described 
via a pair of orthogonal unit vectors a and c. Vector a is the density 
wave vector which also coincides with the smectic layer normal due 
to the constant thickness assumption. Away from dislocations we 
must have(12) 

The unit vector c is the unit orthogonal projection of n onto the 
smectic planes. Thus c is always tangential to the smectic layers. It 
follows that the directors a and c must be subject to  the constraints 

V x a  = O .  (1) 

a - a = c . c = l ,  a . c = O .  ( 2 )  
A bulk energy for the sample, W ,  can be constructed based on 

a ,  c and their gradients: 

2W = K1 (V . a )2  + K2 (V . c )2  + K3 ( a  V x c )2 

+ K ~ ( c  . V  x c )2+K5(b  . V  x ~ ) ~ + 2 K s ( V . a ) ( b  .V x c )  
+ 2 K 4 a  . V x c ) (c  . V x c ) + 2Ka(V . c ) ( b  . V x c ) 
+ 2Kg(V. a ) ( V .  c ) ,  

(3) 
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where the Ki's are elastic constants and unit vector b = a x c . The 
relationship between these elastic constants and those of the Orsay 
Group(13) is described in Leslie et a1.(14) 

In the absence of body forces the Euler-Lagrange static equilib- 
rium equations are(') 

na + y a  + p c + V x p  = 0 ,  (4) 
nc + r c  + p a  = 0 ,  ( 5 )  

where y, p, r and p are Lagrange multipliers which arise from the 
four constraints (1) and (2). The director body forces, no and nc, 
are 

where, for example, a,,j denotes partial differentiation of the ith com- 
ponent of a with respect to the j t h  variable and repeated indices 
follow the summation convention. Vector forms for no and rIc may 
be found in Nakagawa.(') 

Employing (2), (4) and (5), we can calculate the Lagrange mul- 
tipliers p and T via appropriate scalar products, 

p = - n c  .a, r=-nC . c .  (6) 

In the following sections we will propose solutions to (4), (5) for 
a variety of layer geometries. For any molecular configuration to be 
valid it must automatically satisfy constraints (l), (2), and from (5), 

rIc * b  = O .  (7) 

We also require to find the Lagrange multipliers via (4) and (6),  in 
particular y and /3 . The former is calculated by taking the diver- 
gence of (4), eliminating p in the process. Finally, (4) is integrated 
in order to solve for p .  In each case we need to ensure that the 
multipliers are free from singularities on the smectic layer, except 
possibly on line defects associated with the layer. 

CYLINDRICAL LAYERING 
Figure l(a) describes a single cylindrical layer of radius T .  Varying T 

provides a family of concentric infinite cylinders sharing a common 
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x 

FIGURE 1. 
(a) cylindrical and (b) spherical layers 

Description of coordinate systems for 

centre axis, equidistant if T changes by the same amount, e.g. T = 
1, 2, 3,. . . , etc. We can fully describe this series of cylinders by 
parameterizing, 

x = TCOS$, y = rsin$, z = z, 

where T > 0, z E R. In the following analysis, 
all vectors are expressed in terms of the new (T ,  $I, z )  coordinate 
system. The normal to any cylindrical surface is therefore given by 
a = gradr = (1, 0, 0). 

Consider the case when a = (1, 0, 0), c = (0, 0, 1) and b = 
(0, -1, 0). In this molecular configuration the projection director 
c is in the direction of the cylindrical axis. Following the notation 
introduced previously it can be shown that 

0 5 $ 5 27r, 

Subsequently it is straightforward to derive the four Euler-Lagrange 
multipliers, 

(Singularities at  r = 0 may be ignored as they coincide with 
central axis of the cylinder.) Therefore we have shown that 
solution satisfies the balance equations and constraints (1)-(5). 

the 
our 
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FIGURE 2. 
Arrows indicate direction of c in either the $-direction, 
c = (0, 1, 0), or in the &direction, c = (0, 0, 1) 

Molecule configuration for spherical geometry. 

SPHERICAL LAYERING 
-4 family of concentric spheres, see Figure l(b), can be described via 
the parameterization 

x = rsin11,cos4, y = rsin?//sin(5, z = rcos11,, 

where r > 0, 0 5 $,$ 5 2n. Once we transform to the (r ,  $, (5) 
system, the outward normal to any surface is again a = gradr  = 
(1, 0, 0). Although Leslie et ul.(') state that static solutions can be 
found for a spherical layering, ignoring singularities, no details of the 
calculations are specified. 

A solution is easily obtained(") when molecules lie in the polar $- 
direction, i.e. c = (0, 1, 0). Here we concentrate on the &direction, 
c = (0, 0, l),  also shown in Figure 2. In this case the director forces 
correspond to 

1 
T~ tan 11, -(& - Ks - 2&)- b ,  
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b .  
1 
r2 r2  tan 111 K5 - 2K6) -c - K7- 

Immediately we can deduce that nC does not satisfy criteria (7) for 
a solution to exist for all nine terms in the energy. The configuration 
we consider will satisfy the balance equations only for a material for 
which the elastic constant K7 = 0. For example, materials which 
exhibit the smectic C M  phase (see Brand and Pleiner@)) have a six 
term energy given by the first six terms in (3). With this constraint 
we can assign Lagrange multipliers which allow us to satisfy the 
balance equations: 

1 1 
r2 sin' li, r2 7 = (2K3 - K4) ~ - 2(K3 - K5 - 2 K 6 ) - ,  

In r In r C 
P = (KE + 2Kg) - b + (K3 - K5 - 2K6) - rtanlC, r 

As expected these multipliers exhibit singularities on the line defect 
corresponding to  lC, = 0 where the molecules converge at the top and 
bottom of the sphere. However the configuration under consideration 
will satisfy the balance equations on the remainder of any uniaxial 
spherical layering. 

TOROIDAL LAYERING 
A torus is the limiting example of the Dupin (or hyperbolic) cyclide, 
a taut, compact, two-dimensional surface (see Leslie et a1.(4) and 
references therein). These surfaces can be layered over each other 
to form parallel equidistant layered structures. Previously, Naka- 
gawa(2) and Leslie et d.(') examined one possible static solution of 
the smectic equations for a Dupin cyclide, subject to  certain con- 
straints on the elastic constants. Although they show that it may 
be possible to find a solution, they do not calculate the individual 
Lagrange multipliers. In particular they do not consider the intrica- 
cies involved in guaranteeing that the multipliers are defined on the 
whole cyclide. Here we introduce another possible configuration not 
previously discussed. We outline the problems involved in obtaining 
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FIGURE 3. Geometrical representation of toroidal surface 

valid multipliers, in particular 7 and 
necessary on the elastic constants. 

, and discuss any restrictions 

The torus shown in Figure 3 may be described via 

p2 = (T - a)2  + z2, 2 + y2 = r2 ,  

where a is the internal radius of the torus and p is the outer radius 
as indicated. A family of layered tori may be constructed by varying 
p for fixed a. The toroidal surface can now be parameterized, 

z = (a  + pcosd) cos$, y = (a + pcosd) sin$, z = psind, 
(8) 

where 

~ ( p ,  4) = a + p c o s d ,  0 < p < a, 0 5 $J,+ 5 27r. 

Here $ is the internal polar angle while 4 is the external polar angle. 
In the calculations which follow we utilize the orthogonal (p,  $, 6) 
coordinate system. The parameterization (8) is equivalent to the 
reduction of Forsyth’s(’6) representation of the Dupin cyclide. Nak- 
agawa(2) employs a different parameterization of the cyclide which 
describes only the inner portion of the surface. We shall see later 
that this approach omits points on the torus which have an impor- 
tant bearing on the validity of solutions. 

When the molecules are aligned in the polar $-direction, c = 
(0, 1, 0), as shown in Figure 4, the solution is analagous to  that for 
the Dupin cyclide discussed in Nakagawa.(2) Due t o  the constraint 
(7), for our solution to  exist we must restrict our elastic constants 
such that K,  = 0 and KB + KS = 0. Furthermore, y and /3 must be 
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FIGURE 4. Molecule configuration when c -director points 
in the $-direction, c = (0, 1, 0), or in the &direction, c = 

(0, 0, 1). 

choscri carefully to ensure that they art. defined on the whole torus, 
excluding possibly the central axis defect corresponding to r = 0. 

We now consider an alternative setup, not previously discussed, 
where the molecules traverse the torus in the &direction, c = (0, 0, l), 
also indicated in Figure 4. Substituting the proposed configuration 
into (4) and (6), we derive the following multipliers (details of the 
balance forces, which have no b -components, have been omitted), 

U - 2T 2 2 ( 2 T  - a )  + Ii5- + rc, 1 
p2r2 P2 d T p 2  

T = K2- (a(r  - u)  + p2) + K4 - 

1 + (K5 - K3)- P2 + K6 
2r(a - T )  - a2 

sin 4 sin 4 cos q3 + (K7 - K8) - - K9 + 9 .  rP T 2  

The resulting balance equation far the smectic sample may now be 
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rewritten as 

1 - 2 cosz $ 
r2 

where 

Following the procedure outlined previously, we can evaluate multi- 
pliers 3 and p , 

cos $ sin2 $ cos $ 
?(PI $1 = A1 ( rp In (s) + r.> + A2 - ln P 

rP 

+ K9 - r cos cosz $ l n r  + 1+cos2d) cos $ 1 b .  
There remains a problem with the K9 term in ;V and p ; in both cases 
the multipliers diverge as $ approaches 4 or f. These singularities 
correspond to  circles a t  the extreme top and bottom of the toroidal 
surface. (These lines may be denoted alternatively as r = u.) It is 
not possible to remove these singularities when calculating 9 and p ; 
therefore the proposed solution to the balance equations exists only 
for a material for which Kg = 0. Alternatively the configuration 
is valid for a full nine term bulk energy for a partial torus surface. 
Leslie et a1.(3) encounter a similar problem in their study of smectic 
solutions for the parabolic cyclide and therefore restrict their atten- 
tion to the six term energy of smectic C M  or anti-ferroelectric smectic 
phases. 

Note that the parameterization of Nakagawa@) describes only the 
inner portion of the torus. It can be easily adapted to parameter- 
ize the outer section of the surface. However, unlike the reduction of 
Forsyth's('') Dupin cyclide parameterization, the description in Nak- 
agawa(') always excludes the circles corresponding t o  $ = 2, 9, and 
as a result does not consider the problems associated with calculating 
the multipliers on these lines. 
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