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Cylindrical, Spherical and Toroidal Layering of
Smectic C Liquid Crystals

G. MCKAY

Department of Mathematics, University of Strathclyde, 26 Richmond Street,
Glasgow, Gl 1XH. Scotland, U.K.

This article examines static solutions to the smectic C continuum equations of Leslie et alV

for a variety of layer geometries. In particular it is shown that valid molecular configurations
exist for cylindrical, spherical and toroidal layers. Suitable parameterizations are introduced
for each surface and the Euler-Lagrange balance equations are solved in a suitable coordinate
system. Plots of the surfaces are presented, and their relationship to singularities in the solu-
tions are discussed.
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INTRODUCTION

The isothermal smectic C continuum theory proposed by Leslie et
al.") has proved useful for mathematical analyses of both static and
dynamic problems in a number of different geometries.(>"”) The the-
ory is based on two simple assumptions, the smectic layers, although
deformed, remain of constant thickness, and also the angle of tilt
of the alignment with respect to the layer normal remains fixed. A
serious test for any such static theory of smectics is that it must
predict layers forming complex surfaces such as Dupin or parabolic
cyclides.®9 Static solutions for such layered structures have been
verified using the static theory,*% although these solutions are often
restricted by constraints on the elastic constants of the materials.
Although mentioned in previous articles, no solutions have been
detailed for cylindrical, spherical or toroidal layers. The aim of this
article is to present valid molecular configurations for each of these
types of layering. In each case we will outline the method of so-
lution and discuss any problems which arise due to singularities or
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line defects. Cecil'® and Stewart and McKay!" discuss the math-
ematical relationship between the Dupin and parabolic cyclides and
the geometries examined here. However it is worth noting that the
parameterization of a torus may be derived from that of a Dupin
cyclide if the eccentricity of the underlying focal domain reduces to
2€ero.

In the following Sections we introduce the smectic C continuum
theory of Leslie et al.(t) In particular we discuss the Euler-Lagrange
static equilibrium equations and the associated Lagrange multipli-
ers. We examine solutions for, respectively, cylindrical, spherical
and toroidal layered structures; in each case we introduce a suitable
parameterization for the surfaces before examining one molecular
configuration. Details and calculations for a second valid solution
for each layering are given in Stewart and McKay.('!)

SMECTIC CONTINUUM THEORY

Liquid crystals are elongated molecules for which the long molecular
axes locally adopt one common direction in space, usually described
by a unit vector n, known as the director. Smectic C liquid crystals
are layered structures where the director makes an angle 8 with re-
spect to the layer normal. The smectic structure can be described
via a pair of orthogonal unit vectors @ and ¢. Vector a is the density
wave vector which also coincides with the smectic layer normal due
to the constant thickness assumption. Away from dislocations we
must have(!?

Vxa =0. 1)
The unit vector ¢ is the unit orthogonal projection of n onto the
smectic planes. Thus ¢ is always tangential to the smectic layers. It
follows that the directors a and ¢ must be subject to the constraints

a-a=c-c=1, a-c=0. (2)
A bulk energy for the sample, W, can be constructed based on
a, c¢ and their gradients:
2W=K1(V-a)? +K,(V-c)+ Ki(a -V xc)?
+ Kie - Vxe)P+Ksb-Vxe)l+2Ks(V-a)b-Vxc)
+2K7(a -Vxe)e - Vxe)+2Ka(V-e}b-Vxe)
+ 2K4(V -a)(V-¢e),
3)
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where the K;’s are elastic constants and unit vector b =a xc. The
relationship between these elastic constants and those of the Orsay
Group‘™¥ is described in Leslie et al.(¥

In the absence of body forces the Euler-Lagrange static equilib-
rium equations are(!)

I* +va +pc +V x B =0, (@)
II¢ +7¢ + pa =0, (5)

where v, u, 7 and @ are Lagrange multipliers which arise from the
four constraints (1) and (2). The director body forces, II* and IT¢,

are
o (2,2, o (Y,
P \8(aig) /Y Oai” R CHVAE N

where, for example, a; ; denotes partial differentiation of the ith com-
ponent of @ with respect to the jth variable and repeated indices
follow the summation convention. Vector forms for II® and TI¢ may
be found in Nakagawa.(®

Employing (2), (4) and (5), we can calculate the Lagrange mul-
tipliers u and 7 via appropriate scalar products,

pu=-II° - a, r=-II° - c. (6)

In the following sections we will propose solutions to (4), (5) for
a variety of layer geometries. For any molecular configuration to be
valid it must automatically satisfy constraints (1), (2), and from (5),

I b =0. (7)

We also require to find the Lagrange multipliers via (4) and (6), in
particular v and 8. The former is calculated by taking the diver-
gence of (4), eliminating @ in the process. Finally, (4) is integrated
in order to solve for 3. In each case we need to ensure that the
multipliers are free from singularities on the smectic layer, except
possibly on line defects associated with the layer.

CYLINDRICAL LAYERING

Figure 1(a) describes a single cylindrical layer of radius r. Varying r
provides a family of concentric infinite cylinders sharing a common
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(a)

FIGURE 1. Description of coordinate systems for
(a) cylindrical and (b} spherical layers

centre axis, equidistant if r changes by the same amount, e.g. r =
1, 2, 3,..., etc. We can fully describe this series of cylinders by
parameterizing,

T =71Cc08, y=rsiny, z =z,

where r > 0, 0 < ¢ < 2r, 2z € R In the following analysis,
all vectors are expressed in terms of the new (r, ¢, z) coordinate
system. The normal to any cylindrical surface is therefore given by
a =gradr = (1, 0, 0).

Consider the case when @ = (1,0,0), ¢ = (0,0,1) and b =
{0, =1, 0). In this molecular configuration the projection director
¢ is in the direction of the cylindrical axis. Following the notation
introduced previously it can be shown that

Ky
a, n° =--—a.
T

K,
I = =
Subsequently it is straightforward to derive the four Euler-Lagrange
multipliers,

Ky K, Inr
“z—’l‘?’ T=0, ’Y:T_za ﬁzKQ_,,.—b'

(Singularities at = 0 may be ignored as they coincide with the
central axis of the cylinder.) Therefore we have shown that our
solution satisfies the balance equations and constraints (1)-(5).
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FIGURE 2.  Molecule configuration for spherical geometry.
Arrows indicate direction of ¢ in either the 1)-direction,
¢ = (0, 1, 0), or in the ¢-direction, ¢ = (0, 0, 1)

SPHERICAL LAYERING

A family of concentric spheres, see Figure 1(b), can be described via
the parameterization

r=rsinycosg, ¥y = rsinysin ¢, Z = T1Ccos,

where r >0, 0< ¢,¢ < 2r. Once we transform to the (r, ¥, ¢)
system, the outward normal to any surface is again @ = gradr =
(1, 0, 0). Although Leslie et al.(!) state that static solutions can be
found for a spherical layering, ignoring singularities, no details of the
calculations are specified.

A solution is easily obtained*!) when molecules lie in the polar -
direction, i.e. ¢ = (0, 1, 0). Here we concentrate on the ¢-direction,
¢ = (0, 0, 1), also shown in Figure 2. In this case the director forces
correspond to

1 1
I = —(2K1'—K3+K5+3K6);‘—2'a +K7 mc
1
_(K3 ——K5—2Kﬁ)mb,
1 1
e = (2K, — Kg— —a - — Ky)
( 7 KS 2K9) TQa (2K3 K4) T'QSiﬂz’(/J
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1

1
+2(K3 - K5 - 2K6) :;‘2‘6 e K'(m b.

Immediately we can deduce that II® does not satisfy criteria (7) for
a solution to exist for all nine terms in the energy. The configuration
we consider will satisfy the balance equations only for a material for
which the elastic constant K7; = 0. For example, materials which
exhibit the smectic Cyy phase (see Brand and Pleiner!®)) have a six
term energy given by the first six terms in (3). With this constraint
we can assign Lagrange multipliers which allow us to satisfy the
balance equations:

1

= PR R

1
—2(K;— K5 — 2K6);5 ,

1
p = (Kg -+ 2K9);§ s

1 Inr
v o= (2K1—K3+K5+3K6)T—2+(K3—K5_2K6) =
Inr Inr
= -— — K5 — 2K, )
B (Ks +2Ko) — b + (K3 — Ks G)Ttanwc

As expected these multipliers exhibit singularities on the line defect
corresponding to ¢ = 0 where the molecules converge at the top and
bottom of the sphere. However the configuration under consideration
will satisfy the balance equations on the remainder of any uniaxial
spherical layering.

TOROIDAL LAYERING

A torus is the limiting example of the Dupin (or hyperbolic) cyclide,
a taut, compact, two-dimensional surface (see Leslie et al.() and
references therein). These surfaces can be layered over each other
to form parallel equidistant layered structures. Previously, Naka-
gawa® and Leslie et al.(!) examined one possible static solution of
the smectic equations for a Dupin cyclide, subject to certain con-
straints on the elastic constants. Although they show that it may
be possible to find a solution, they do not calculate the individual
Lagrange multipliers. In particular they do not consider the intrica-
cies involved in guaranteeing that the multipliers are defined on the
whole cyclide. Here we introduce another possible configuration not
previously discussed. We outline the problems involved in obtaining
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FIGURE 3. Geometrical representation of toroidal surface

valid multipliers, in particular v and B, and discuss any restrictions
necessary on the elastic constants.
The torus shown in Figure 3 may be described via

P=(r-a’+2, P+yt=r’,

where a is the internal radius of the torus and p is the outer radius
as indicated. A family of layered tori may be constructed by varying
p for fixed a. The toroidal surface can now be parameterized,

z = (a + pcos ¢) cos ), y = (a+ pcos @) siny, 2 = psin @,
(8)

where
r(p, ¢) =a+pcosp, 0<p<a, 0L9,¢<2m

Here 1 is the internal polar angle while ¢ is the external polar angle.
In the calculations which follow we utilize the orthogonal (p, ¥, @)
coordinate system. The parameterization (8) is equivalent to the
reduction of Forsyth’s(!®) representation of the Dupin cyclide. Nak-
agawa® employs a different parameterization of the cyclide which
describes only the inner portion of the surface. We shall see later
that this approach omits points on the torus which have an impor-
tant bearing on the validity of solutions.

When the molecules are aligned in the polar 1-direction, ¢ =
(0, 1, 0), as shown in Figure 4, the solution is analagous to that for
the Dupin cyclide discussed in Nakagawa.®® Due to the constraint
(7}, for our solution to exist we must restrict our elastic constants
such that K7y = 0 and K + Ky = 0. Furthermore, v and 8 must be
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(_'=[0, 0. 1]

c=(0, 1, 0)

O

FIGURE 4.  Molecule configuration when c-director points
in the y-direction, ¢ = (0, 1, 0), or in the ¢-direction, ¢ =
(09 0, 1)'

chosen carefully to ensure that they are defined on the whole torus,
excluding possibly the central axis defect corresponding to r = 0.
We now consider an alternative setup, not previously discussed,
where the molecules traverse the torus in the ¢-direction, ¢ = (0, 0, 1},
also indicated in Figure 4. Substituting the proposed configuration
into {4) and (6), we derive the following multipliers (details of the
balance forces, which have no b-components, have been omitted),

.1 2 a—2r .2 2(2r —a)
T = RZW(G(T—G)+I))+K4 —.7.‘;2——_‘7]‘5‘/?"_[(6—7'7)2—
2sin . asin
+ (K7 — Kg) ¢+f‘9 2¢»
T or
sin ¢ cos , sin 2r—-a 1
o= "‘KQ ¢2 ¢-—I\3 ¢——K7( 2)+K8“§
T TP rp p
a? —2r(a—r)
+K9( r2p? )
2r(a—r) — a? 1 2r—a
v = —K1< 7"2,02 )+(K5"‘K3)'—2'+Kﬁ <-p-2‘+ 7‘[)2 )
sin sin ¢ cos R
+ (K7 — Ky) Tp¢ K, _.?;_2__1”.+ 4.

The resulting balance equation for the smectic sample may now be
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rewritten as

asin ¢ sin ¢

curl B +4a = {A1T+A2—+A3L+K9
2p Tp

1~ 2cos?¢
0% 72 ¢
where

Ap =K, — Ky, Ay = K3 + K5 + 2K, A3 = —Kg — K.

Following the procedure outlined previously, we can evaluate multi-
pliers 4 and 3,

. _ cos ¢ P sin? ¢ cos ¢
Ap,d) = Ay (———Tp ln(r) + = )+A2 o Inp
sin ¢ 2 B 2
9_—r2pcos2¢( (1 + 2cos® @)rinr + a(l — 2cos® @) ),
B = [‘Al M 10 (2) - 42 mmp s 4, 2
r rp

1—2cos?¢ 1+ cos? ¢
Kg( 0s ¢ Inr + cos ¢ )]b

There remains a problem with the Ky term in ‘y and 3; in both cases
the multipliers diverge as ¢ approaches 7 or — . These singularities
correspond to circles at the extreme top and bottom of the toroidal
surface. (These lines may be denoted alternatively as r = a.) It is
not possible to remove these singularities when calculating 4 and 3 ;
therefore the proposed solution to the balance equations exists only
for a material for which Ky = 0. Alternatively the configuration
is valid for a full nine term bulk energy for a partial torus surface.
Leslie et al.®® encounter a similar problem in their study of smectic
solutions for the parabolic cyclide and therefore restrict their atten-
tion to the six term energy of smectic Cy or anti-ferroelectric smectic
phases.

Note that the parameterization of Nakagawa(® describes only the
inner portion of the torus. It can be easily adapted to parameter-
ize the outer section of the surface. However, unlike the reduction of
Forsyth’s(!® Dupin cyclide parameterization, the description in Nak-
agawa(® always excludes the circles corresponding to ¢ = §, 3%, and
as a result does not consider the problems associated with calculatmg
the multipliers on these lines.
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